aggs
avg 平均数
最近15分钟的平均访问时间,upstream_time_ms是每次访问时间,单位毫秒
{ "query": { "filtered": { "filter": { "range": { "@timestamp": { "gt": "now-15m", "lt": "now" } } } } }, "aggs": { "execute_time": { "avg": { "field": "upstream_time_ms" } } }}//当然你也可以直接将过滤器写在aggs里面{ "size": 0, "aggs": { "filtered_aggs": { "filter": { "range": { "@timestamp": { "gt": "now-15m", "lt": "now" } } }, "aggs": { "execute_time": { "avg": { "field": "upstream_time_ms" } } } } }}
cardinality 基数,比如计算uv
你可能注意到了size:0,如果你只需要统计数据,不要数据本身,就设置它,这不是我投机取巧,官方文档也是这么干的。
{ "size": 0, "aggs": { "filtered_aggs": { "filter": { "range": { "@timestamp": { "gt": "now-15m", "lt": "now" } } }, "aggs": { "ipv": { "cardinality": { "field": "ip" } } } } }}
percentiles 基于百分比统计
最近15分钟,99.9的请求的执行时间不超过多少
{ "size": 0, "query": { "filtered": { "filter": { "range": { "@timestamp": { "gt": "now-15m", "lt": "now" } } } } }, "aggs": { "execute_time": { "percentiles": { "field": "upstream_time_ms", "percents": [ 90, 95, 99.9 ] } } }}//返回值,0.1%的请求超过了159ms{ "took": 620, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 679400, "max_score": 0, "hits": [] }, "aggregations": { "execute_time": { "values": { "90.0": 24.727003484320534, "95.0": 72.6200981699678, "99.9": 159.01065773524886 //99.9的数据落在159以内,是系统计算出来159 } } }}
percentile_ranks 指定一个范围,有多少数据落在这里
{ "size": 0, "query": { "filtered": { "filter": { "range": { "@timestamp": { "gt": "now-15m", "lt": "now" } } } } }, "aggs": { "execute_time": { "percentile_ranks": { "field": "upstream_time_ms", "values": [ 50, 160 ] } } }}//返回值{ "took": 666, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 681014, "max_score": 0, "hits": [] }, "aggregations": { "execute_time": { "values": { "50.0": 94.14716385885366, "160.0": 99.91130872493076 //99.9的数据落在了160以内,这次,160是我指定的,系统计算出99.9 } } }}
统计最近15分钟,不同的链接请求时间大小
{ "size": 0, "query": { "filtered": { "filter": { "range": { "@timestamp": { "gt": "now-15m", "lt": "now" } } } } }, "aggs": { "execute_time": { "terms": { "field": "uri" }, "aggs": { "avg_time": { "avg": { "field": "upstream_time_ms" } } } } }}//返回,看起来url1 比 url2慢一点(avg_time),不过url1的请求量比较大 (doc_count){ "took": 1655, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 710802, "max_score": 0, "hits": [] }, "aggregations": { "execute_time": { "doc_count_error_upper_bound": 10, "sum_other_doc_count": 347175, "buckets": [ { "key": "/url1", "doc_count": 362688, "avg_time": { "value": 6.601660380271749 } }, { "key": "/url2", "doc_count": 939, "avg_time": { "value": 5.313099041533547 } } ] } }}
找出url响应最慢的前2名
{ "size": 0, "query": { "filtered": { "filter": { "range": { "@timestamp": { "gt": "now-15m", "lt": "now" } } } } }, "aggs": { "execute_time": { "terms": { "size": 2, "field": "uri", "order": { "avg_time": "desc" } }, "aggs": { "avg_time": { "avg": { "field": "upstream_time_ms" } } } } }}//返回值{ "took": 1622, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 748712, "max_score": 0, "hits": [] }, "aggregations": { "execute_time": { "doc_count_error_upper_bound": -1, "sum_other_doc_count": 748710, "buckets": [ { "key": "url_shit", "doc_count": 123, "avg_time": { "value": 8884 } }, { "key": "url_shit2", "doc_count": 456, "avg_time": { "value": 8588 } } ] } }}
value_count 文档数量
相当于
select count(*) from table group by uri,为了达到这个目的,只需要把上文中,avg 换成value_count。不过avg的时候,结果中的doc_count其实达到了同样效果。怎么取数据画个图?比如:最近2分钟,每20秒的时间窗口中,平均响应时间是多少
{ "size": 0, "query": { "filtered": { "filter": { "range": { "@timestamp": { "gt": "now-2m", "lt": "now" } } } } }, "aggs": { "execute_time": { "date_histogram": { "field": "@timestamp", "interval": "20s" }, "aggs": { "avg_time": { "avg": { "field": "upstream_time_ms" } } } } }}
pv 分时统计图(每小时一统计)
周期大小对性能影响不大
{ "size":0, "fields":false, "aggs": { "execute_time": { "date_histogram": { "field": "@timestamp", "interval": "1h" } } }}